
The dynamics of proving uncolourability of large random graphs: I. Symmetric colouring

heuristic

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 11055

(http://iopscience.iop.org/0305-4470/36/43/027)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/43
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 11055–11067 PII: S0305-4470(03)62526-6

The dynamics of proving uncolourability of large
random graphs: I. Symmetric colouring heuristic

Liat Ein-Dor1 and Rémi Monasson1,2
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Abstract
We study the dynamics of a backtracking procedure capable of proving
uncolourability of graphs, and calculate its average running time T for sparse
random graphs, as a function of the average degree c and the number
of vertices N. The analysis is carried out by mapping the history of the
search process onto an out-of-equilibrium (multi-dimensional) surface growth
problem. The growth exponent of the average running time, ω(c) = (ln T )/N ,
is quantitatively predicted, in agreement with simulations.

PACS numbers: 05.10.−a, 05.70.−a, 89.20.Ff

1. Introduction

The wide variety of practical problems that can be mapped onto NP-complete problems,
together with the challenge in finding an answer to one of the most important open questions
in theoretical computer science, ‘Does NP = P ?’, have led to intensive studies in the past
decades. Despite intense efforts, the worst case running times of all currently known algorithms
grow exponentially with the size of the inputs to these problems. However, NP-complete
problems are not always hard. They might be even easy to solve on average [1–3], i.e.
when their resolution complexity is measured with respect to some underlying probability
distribution of instances. This ‘average-case’ behaviour depends, of course, on the input
distribution.

In the graph colouring problem, one of the most well-known combinatorial optimization
problems with applications ranging from time tabling and scheduling [4, 5], through register
allocation [6, 7], to frequency assignment [8], the average-case behaviour is often defined on
random graphs. The aim is to colour the vertices of the graph such that no adjacent vertices
have the same colour. Whether this can be done with k or less than k colours constitutes
the so-called k-colouring (k-COL) decision problem. 2-COL is easy and can be decided in
a time growing polynomially with the size (number of vertices) of the graph, while k-COL
is NP-complete for any k � 3 [1, 9]. We shall restrict to the investigation of 3-COL in the
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following, and denote by red (R), green (G) and blue (B) the available colours. Graphs will
be generated according to the G(N,p) distribution: they are made of N vertices, linked two
by two through edges with probability p. Studies of the 3-COL problem on this ensemble
have indicated that, for sparse random graphs in which p = c/N , a phase transition between
colourable and uncolourable phases occurs in the large-N limit as the connectivity (average
vertex degree) c is varied c [10, 11]. Below a critical value c3 of the connectivity c, almost
all instances are colourable whereas, above c3, the probability that an instance is colourable
drops to zero. Determination of c3 is an open question in random graph theory first posed by
Erdös [12]. Nevertheless, years of investigation have yielded some lower and upper bounds
for c3. Probabilistic counting arguments have led to the best known upper bound c3 < 4.99
[13]. A recent analysis of a ‘smoothed’ version of the Brelaz heuristic [14] has yielded the
highest lower bound c3 > 4.03 [15].

In a recent work, Mulet et al used a mapping of the graph colouring problem onto
the Potts model, and applied statistical mechanics methods to estimate c3 [16]. The result,
c3 ≈ 4.69, is very close to numerical simulations [17]. Below c3, solving 3-COL can be done
by exhibiting a proper colouring, whereas above c3, resolution of an instance almost surely
means exhibiting a proof of its uncolourability. One of the most popular algorithms capable of
exhibiting such proofs is the Davis–Putnam–Logemann–Loveland procedure (DPLL) [18]. Its
operation amounts to a clever exhaustive search in the configuration space, based on the errors
and trials principle. Generally, the time needed by DPLL to check the absence of colouring
grows exponentially with the size of the graph, T ∼ exp(Nω(c)). The purpose of this paper
is to calculate ω as a function of c. Such a study was recently undertaken for the satisfiability
problem [19, 20] and vertex covering [20, 21], both hard decision problems. The interest of
3-COL with respect to the latter cases is its intrinsic symmetry. From any proper colouring,
five other colourings can be deduced through colour permutations. It is therefore interesting
to understand whether respecting or breaking this symmetry can lead to computational gains,
and how this can be implemented in the dynamics of the search algorithm [22].

Hereafter, we focus on the case of colouring heuristics that do not explicitly break the
symmetry between colours. The analysis of the biased case is left to a forthcoming companion
paper [22]. This paper is organized as follows. The colouring algorithm is presented in
section 2. Section 3 is devoted to the analysis of the dynamics and of the resolution time of
the algorithm. In section 4 we summarize and propose some perspectives.

2. Description of the colouring algorithm

The algorithm which we analyse in this paper is a complete algorithm capable of determining
whether a given graph is 3-colourable or not. The algorithm is based on a combination of a
colouring heuristic, 3-Greedy-List (3-GL), and backtracking steps. Its operation is exposed
below.

2.1. Operation of the greedy-list algorithm with backtracking

The action of the colouring procedure is illustrated in figure 1 and described as follows:

• Necessary information: while running, the algorithm maintains for each uncoloured
vertex, a list of available colours, which consists of all the colours that can be assigned to
this vertex given the colours already assigned to surrounding vertices.

• Colouring order: the order in which the vertices are coloured, is such that the most
constrained vertices, i.e. with the least number of available colours are coloured first.
At each time step, a vertex is chosen among the most constrained vertices, and its colour
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Figure 1. Two examples which demonstrate how the GL algorithm acts onto a colourable (left-
hand side) and an uncolourable (right-hand side) graph. The figure illustrates how the search
tree grows with the operation of the algorithm. Available colours at each step are denoted by the
patterns of the filled circles attached to vertices. When a vertex is coloured, it is removed from
the graph, together with all its attached edges. In addition, the chosen colour is removed from
the neighbours’ sets of available colours. On the left-hand side of the figure, a colourable graph
is coloured by the algorithm. No contradiction is encountered, and the algorithm finds a solution
without backtracking. On the right-hand side, the algorithm tries to colour an uncolourable graph.
When it first hits a contradiction (step 2), i.e. when two 1-colour vertices connected by an edge
are left with the same available colour, the algorithm backtracks to the last-coloured vertex, and
tries to colour it with the second available colour. When a contradiction is hit again, the algorithm
terminates. Note that in principle it could backtrack to the first-coloured node, and try other colour
options. However, due to colour gauge symmetry, this will not yield a solution.

is selected from the list of its available colours. Both choices are made according to some
heuristic rule, which can be unbiased (no preference is made between colours), or biased
(following a hierarchy between colours) (see the next section).

• List-updating: to ensure that no adjacent vertices have the same colour, whenever a vertex
is assigned a colour, this colour is removed from the lists (if present) attached to each of
the uncoloured neighbours.

• Contradictions and backtracking: a contradiction occurs as soon as one of the lists becomes
empty. Then, the algorithm backtracks to the most recently chosen vertex, which has more
than one available colour (the closest node in the search tree—see definition below).

• Termination condition: the algorithm stops when all vertices are coloured, or when all
colouring possibilities have been tried.
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A search tree describes the action of the algorithm with the following components:

• Node: a node in the tree represents a vertex chosen by the algorithm, which has more
than one colour in its available-colours list.

• Edge: an edge which comes out of a node, corresponds to a possible colour of the chosen
vertex.

• Leaf: a branch terminates either by a solution (denoted by S) or by a contradiction
(denoted by C), depending on whether the colour choices made along this branch give a
proper colouring of the graph, or not.

2.2. Colour symmetry: the unbiased 3-GL heuristic

Let us call 3-GL heuristic the incomplete version of the above algorithm, obtained when
the algorithm stops if a colouring is found (and outputs ‘colourable’), or just after the first
contradiction instead of backtracking (and outputs ‘don’t know if colourable or not’). In
contrast to 3-GL algorithm with backtracking, the 3-GL heuristic is not able to prove the
absence of solution, and is amenable to rigorous analysis [15].

In the simplest case, vertices and colours are chosen purely randomly without any bias
between colours (colouring order step described above). This ‘symmetric’ 3-GL heuristic
verifies two key properties which our analysis relies on. The first one is a statistical invariance
called R-property. Throughout the execution of the algorithm, the uncoloured part of the graph
is distributed as G((1 − t)N, p) where t is the number of coloured vertices divided by N. The
second property is colour symmetry. The search heuristic is symmetric with respect to the
different colours, and the initial conditions are symmetric as well. Denoting by l = {R,G,B}
the list of the three available colours, a 2-colour node can have one of three possible lists
{R,G}, {R,B}, {G,B} and similarly, there are three possible lists for a 1-colour node. Due
to colour symmetry, in the limit of large N, we expect the groups of 1-colour and 2-colour
vertices to be composed of an equal number of vertices (with o(N) fluctuations) with the three
kinds of lists. Hence, in the leading order, the evolution of the algorithm can be expressed by
the evolution of the three numbers Nj(T ) of j -colour nodes (j = 1, 2, 3). The analysis of the
evolution of these numbers in the course of the colouring was done by Achlioptas and Molloy
[23]. It is briefly recalled below.

2.3. Analysis of the symmetric 3-GL heuristic

In the absence of backtracking, 3-GL terminates as soon as a contradiction occurs, or
a solution is found. Differential equations can be used to track the evolution of node
populations as colouring proceeds [15]. In this section, we briefly recall how to obtain these
differential equations, and the associated search trajectories of the heuristic in terms of node
populations.

According to the R-property, the probability that a j -colour node is a neighbour of the
currently coloured node equals c/N throughout the running of the heuristic. The probability
that the same colour appears in its list is j/3. Therefore the two average flows of vertices, w2(T )

from N3(T ) to N2(T ), and w1(T ) from N2(T ) to N1(T ) are cN3(T )/N and 2cN2(T )/(3N)

respectively. Hence, the evolution equations for the three populations of vertices read

N3(T + 1) = N3(T ) − w2(T )

N2(T + 1) = N2(T ) + w2(T ) − w1(T ) − δN1(T )

N1(T + 1) = N1(T ) + w1(T ) − (1 − δN1(T ))

(1)

where δN1(T ) = 1 if N1(T ) = 0 (a 2-colour vertex is coloured) and δN1(T ) = 0 if N1(T ) �= 0
(a 1-colour vertex is coloured). For c > 1, both N2(T ) and N3(T ) are extensive in N, and can
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be written as

Ni(T ) = ni(T /N)N + o(N). (2)

Apparition of the reduced time, t = T/N , means that population densities ni(T /N) change
by O(1) over O(N) time intervals. To avoid the appearance of contradictions, the number
of 1-colour vertices must remain of O(1) throughout the execution of the algorithm. From
queueing theory, this requires w1(t) < 1, that is

2
3cn2(t) < 1 (3)

which means that 1-colour nodes are created slowly enough to colour them and do not
accumulate. Thus, in the absence of backtracking, the evolution equations for the densities
are

dn3(t)

dt
= −cn3(t)

dn2(t)

dt
= cn3(t) − 1. (4)

The solution of these differential equations, with initial conditions n3(0) = 1, n2(0) = 0, is

n3(t) = e−ct n2(t) = 1 − t − e−ct . (5)

Equations (4) were obtained under the assumption that n2(t) > 0 and hold until t = t2 at which
the density n2 of 2-colour nodes vanishes. For t > t2, 2-colour vertices do not accumulate
anymore. They are coloured as soon as they are created. 1-colour vertices are almost never
created, and the vertices coloured by the algorithm are either 2-, or 3-colour vertices. Thus,
when t2 < t < 1, n2(t) = 0, and n3(t) = 1 − t decreases to zero. A proper colouring is found
at t = 1, i.e. when all nodes have been coloured.

These equations define the trajectory of the algorithm in phase space in the absence of
contradictions, i.e. as long as condition (3) is fulfilled. The trajectory corresponding to c = 3 is
plotted in figure 2. For c < cL ≈ 3.847, condition (3) is never violated, and the probability that
the algorithm succeeds in finding an appropriate colouring without backtracking is positive.
The complexity γ (c)N of the algorithm in this regime of c is linear with N, and equals the
number of nodes in the single branch of the search tree,

γ (c) = 1 − 2

3
c

∫ t∗

0
dt n2(t) (6)

where t∗ > 0 is the first time (after t = 0) that n2(t) becomes 0.
For c > cL condition (3) is violated at t = td(c) which depends on c, and 1-colour

vertices start to accumulate. As a result, the probability for contradictions becomes large, and
backtracking enters into play.

3. Study of the 3-greedy-list algorithm with backtracking

The analytical study of the complexity in the presence of backtracking is inspired from previous
analysis of random 3-SAT solving with DPLL algorithm [19, 24].

3.1. Evolution equation for the search process

In the absence of solution, the algorithm builds a complete search tree, with two branches
outcoming from each node, before stopping3. In a complete tree Q + 1 = B, where B is the
3 In the colourable phase, there is a whole regime where n2 = 0 and nodes with three colours are chosen, but this
does not happen in the UNCOL phase since contradictions emerge from the percolating component of the graph, on
which n2 = 0. Therefore no node, except the first one splits into three branches.
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Figure 2. Trajectories of dominant search branches generated by the 3-GL in the UNCOL
phase (c > c3 � 4.7), compared to a search trajectory in the easy COL phase (c < cL � 3.85).
Horizontal and vertical axes represent the densities n2 and n3 of 2- and 3-colour nodes respectively.
Trajectories are depicted by solid curves, and the arrows indicate the direction of motion (increasing
depth of the search tree); they originate from the left top corner, with coordinates (n2 = 0, n3 = 1),
since all nodes in the initial graph are 3-colour nodes. Dots at the end of the UNCOL trajectories
(c = 7, 10, 20) symbolize the halt point at which condition n2 < 3 ln 2/c ceases to be fulfilled, and
the search tree stops growing (24). Note that as the initial connectivity increases, the trajectories
halt at earlier stage, implying the early appearance of contradictions as the problem becomes over-
constrained (large connectivity values). The COL trajectory (shown here for c = 3) represents the
under-constrained region of the problem, where the very first search branch is able to find a proper
colouring (bottom left corner with coordinates (n2 = 0, n3 = 0)).

T+1

T

0

depth

graph to be coloured

c c

search tree at depth T-1

Figure 3. Imaginary, breadth-first growth process of a search tree associated with an UNCOL
graph and used in the theoretical analysis. T denotes the depth in the tree, that is the number of
nodes coloured along each branch. At depth T, one node is chosen on each branch among 1-colour
vertices if any (grey circles), or 2-, 3-colour (splitting, black circles). If a contradiction occurs as a
result of 1-colour node colouring, the branch gets marked with C and dies out. The growth of the
tree proceeds until all branches carry C leaves. The resulting tree is identical to that built through
the usual, sequential operation of the 3-GL algorithm.

number of leaves and Q the number of nodes. This relation implies that the key to obtaining
the complexity Q lies in the calculation of B. In order to enable a mathematical analysis of B,
we rely on the fact that the search tree is complete, and therefore the sequential (depth-first)
way in which the algorithm builds it is irrelevant to the final structure. In other words, the
order in which the available colours of a vertex are tried, does not affect the final shape of
the tree. An identical tree can be built in a parallel (breadth-first) way defined as follows, and
illustrated in figure 3.
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At time T = 0, the tree reduces to a root node, to which is attached the graph to colour,
and an attached outgoing edge. At time T, that is, after having coloured T vertices of the graphs
attached to each branch, the tree is made of B̃(T )(�2T ) branches, each carrying a partially
coloured graph. At the next time step T → T +1, a new layer is added to the tree by colouring,
according to 3-GL heuristic, one more vertex along every branch. As a result, at each instant of
the parallel process, branches either die (encounter a contradiction), keep growing (a 1-colour
vertex is coloured), or split (a 2-colour vertex is chosen and its two available colours are tried
simultaneously) (figure 3). This parallel growth process is Markovian, and can be encoded in
an instance-dependent (and exponentially large in N ) evolution matrix H [24].

To obtain a tractable expression for H, we neglect correlations arising from the choice of
the same vertex in two different branches. After assigning T variables, each branch represents
a different sequence of T coloured vertices, which determines the values {N1, N2, N3} attached
to this branch. Denoting by B̃(N1, N2, N3; T ) the number of branches at time T with
Ni (i = 1, 2, 3) i-colour vertices, the growth process of the search tree can be described
by the evolution of B̃(N1, N2, N3; T ) with time. This evolution is given by

B̃(N1, N2, N3; T + 1) =
∞∑

N ′
1,N

′
2,N

′
3=0

H(N1, N2, N3, N
′
1, N

′
2, N

′
3; T ) B̃(N ′

1, N
′
2, N

′
3; T ) (7)

where

H(N1, N2, N3, N
′
1, N

′
2, N

′
3; T ) =

N ′
3∑

w2=0

(
N ′

3

w2

)( c

N

)w2
(

1 − c

N

)N3

δN ′
3−N3−w2

×



(
1 − δN ′

1

) N ′
2∑

w1=0

(
N ′

2

w1

)(
2c

3N

)w1
(

1 − 2c

3N

)N ′
2−w1

δN2−N ′
2−(w2−w1)δN1−N ′

1−w1+1

+ 2δN ′
1

N ′
2−1∑

w1=0

(
N ′

2 − 1

w1

)(
2c

3N

)w1
(

1 − 2c

3N

)N ′
2−w1−1

δN2−N ′
2−(w2−w1−1)δN1−N ′

1−w1



(8)

is the branching matrix of the 3-GL algorithm, and δN is the Kronecker delta function. The
matrix describes the average number of branches with {Ni}3

i=1 i-colour vertices, which are
coming out from branches with {N ′

i }3
i=1 i-colour vertices, as a result of all the colouring options

of the vertex coloured at time T. The R-property is responsible for the binomial distributions of
the flows w1 and w2 in (8). Note that (8) is written under the assumption that no 3-colour nodes
are chosen by the algorithm throughout the growth process. This assumption is consistent with
the resultant solution which shows that in the uncolourable (UNCOL) region, n2(t), namely
the number of 2-colour vertices divided by N, keeps positive for all t > 0.

3.2. Resolution of the evolution equation

In order to obtain the complexity from the evolution equation of B̃( 	N; T ) (7), we define the
generating function B(	y; T ) of B̃( 	N; T ) to be

B(	y; T ) =
∑

	N
exp(	y • 	N)B̃( 	N; T ) 	y = (y1, y2, y3) 	N = (N1, N2, N3). (9)

Plugging (8), (9) into (7) yields the following evolution equation for the generating function
B(	y; T ):

B(	y; T + 1) = e−y1B(	g(	y); T ) + (2e−y2 − e−y1) B(−∞, g2(	y), g3(	y); T ) (10)
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where

g1(	y) = y1 g2(	y) = y2 +
2c

3N
(ey1−y2 − 1) g3(	y) = y3 +

c

N
(ey2−y3 − 1). (11)

To solve (10), we make scaling hypothesis for B̃ and B in the large-N limit [19]. Let us examine
how a step of the algorithm affects the size of the three populations N1, N2, N3. Since the
average connectivity is O(1), i.e. each vertex is connected on average only to O(1) vertices,
when a vertex is coloured, the number of vertices whose status (the number of available
colours) is subsequently changed is bounded by the number of neighbours of the coloured
vertex. Hence a reasonable assumption is that the densities ni = Ni/N change by O(1) after
T = t × N vertices are coloured. The corresponding ansatz for the number of branches is

B̃( 	N; T ) = eNω(n1,n2,n3;t)+o(N) (12)

where non-exponential terms in N depend on the populations of i-colour nodes (i = 1, 2, 3).
From (12) and (9) we obtain the following scaling hypothesis for the generating function B:

B(	y; T ) = eNϕ(y1,y2,y3;t)+o(N) (13)

where ϕ(	y; t) is the Legendre transform of ω( 	N; t), the logarithm of the number of branches
B( 	N; T ) divided by N,

ϕ(	y; t) = max
	n

[ω(	n; t) + 	y · 	n]

ω(	n; t) = min
	y

[ϕ(	y; t) − 	y · 	n]
(14)

where 	n = (n1, n2, n3). 	y and 	n are conjugated Legendre variables; in particular, the typical
fraction of i-colour nodes at depth t is given by the derivatives of ϕ at vanishing argument,

ni(t) = ∂ϕ

∂yi

(	y = 0; t). (15)

At the initial stage of the tree building up, there is a single outgoing branch from the root node,
carrying a fully uncoloured graph. Thus, B̃( 	N; T = 0) = 1 if 	N = (0, 0, N), 0 otherwise,
and B(	y, T = 0) = eNy3 . The initial condition for function ϕ is simply,

ϕ(	y; t = 0) = y3. (16)

According to (2) both N2(T ) and N3(T ) are extensive in N; hence n2 > 0 and n3 > 0.
Conversely, as soon as N1(T ) becomes very large, contradictions are very likely to occur, and
the growth process stops. Throughout the growth process, N1 = O(1) almost surely. Thus
n1 = 0 with high probability, and ϕ does not depend upon y1 from (15).

Independence of ϕ on y1 allows us to choose the latter at our convenience, that is, as a
function of y2, y3, t . Following the so-called kernel method [25], we see that equation (10)
simplifies if y1 = y2 − ln 2. Then, from ansatz (13), we obtain the following partial differential
equation (PDE):

∂ϕ

∂t
(y2, y3; t) = −y2 + ln 2 − c

3

∂ϕ

∂y2
(y2, y3; t) + c(ey2−y3 − 1)

∂ϕ

∂y3
(y2, y3; t). (17)

The solution of PDE (17) with initial condition (16) reads

ϕ(y2, y3; t) = c

6
t2 − c

3
t + (1 − t)(y2 − ln 2) + ln[3 + e−2ct/3(2ey3−y2 − 3)]. (18)
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Figure 4. Function ω (log of number of branches with densities n2 = 1 − t − n3, n3 of 2- and
3-colour nodes at depth t in the search tree) as a function of n3 and t for c = 10. The top of
the curve at given time t, ω∗(t), is reached for the dominant branch 3-colour density n∗

3(t). The
evolution of ω is shown upto t = th at which dominant branches in the search tree stop growing
(die from the onset of contradictions). The maximal ω at th, ω∗(th), is our theoretical prediction
for the complexity.

3.3. Growth process of the search tree

PDE (13) can be interpreted as a description of the growth process of the search tree resulting
from the algorithm operation. Using Legendre transform (14), PDE (13) can be written as
an evolution equation for the logarithm ω(n2, n3; t) of the average number of branches with
densities n2, n3 of 2-, 3-colour nodes as the depth t = T/N increases,

∂ω

∂t
= ∂ω

∂n2
+ ln 2 − c

3
n2 + cn3

[
exp

(
∂ω

∂n3
− ∂ω

∂n2

)
− 1

]
. (19)

The surface ω, growing with ‘time’ t above the plane n2, n3 describes the whole distribution
of branches. Here, this distribution simplifies due to node conservation. The sum n2 + n3 of
2- and 3-colour node densities necessarily equals the fraction 1 − t of not-yet coloured nodes.
Therefore, ω is a function of n3 and t only, whose expression is obtained through inverse
Legendre transform of (18),

ω(n3; t) = c

6
t (1 − 2t − 4n3) − n3 ln n3 − (1 − n3) ln(1 − n3)

− (1 − t − n3) ln 2 + (1 − n3) ln[3(1 − e−2tc/3)]. (20)

Figure 4 exhibits ω(n3, t) for c = 10.
The average number of branches at depth t in the tree equals

B̃(t) =
∫

dn2 dn3 eNω(n2,n3;t) ∼ eNω∗(t) (21)
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where

ω∗(t) = c

6
t2 − c

3
t − (1 − t) ln 2 + ln[3 − e−2ct/3] (22)

is the maximum over n2, n3 of ω(n2, n3; t) reached in n∗
2(t), n

∗
3(t). In other words, the

exponentially dominant contribution to B̃(t) comes from branches carrying partially coloured
graphs with densities

n∗
3(t) = 2

3e2ct/3 − 1
n∗

2(t) = 1 − t − n∗
3(t). (23)

Under the action of the 3-GL algorithm, initially random 3-colouring instances become random
mixed 2&3-colouring instances, where nodes can have either 2 or 3 colours at their disposal.
This phenomenon indicates that the action of the 3-GL algorithm on random 3-colouring
instances can be seen as an evolution in the n2, n3 phase space (figure 2). Each point (n2, n3)

in this space represents a random mixed 2&3-colouring instance, with an average number
(n2 + n3)N of nodes, and a fraction n3/(n2 + n3) of 3-colour nodes. A parametric plot of
n∗

2(t), n
∗
3(t) as a function of t represents the trajectories of dominant branches in figure 2.

The search tree keeps growing as long as no contradictions are encountered, i.e. as long as
1-colour vertices do not accumulate. This amounts to saying that dominant branches are not
suppressed by contradictions and become more and more numerous through 2-colour node
colouring,

dω∗

dt
(t) > 0 (24)

or equivalently from (19), n∗
2(t) < 3 ln 2/c. This defines the halt condition for the dominant

branch trajectories in the n2, n3 dynamical phase diagram of figure 2. Call th the halt time at
which condition (24) gets violated. The logarithm ω∗(th) of the number of dominant branches
at t = th, when divided by ln 2, yields our analytical estimate for the complexity of resolution,
ln Q/N .4

3.4. Comparison with numerical experiments

To check our theory, we have run numerical experiments to estimate ω, the logarithm of the
median solving time, as a function of the initial graph degree c. Figure 5 describes the output
of these simulations. The easy–hard–easy pattern of the GC problem when passing from the
COL (c < c3) to the UNCOL (c > c3) regions is clearly visible, with an exponential scaling
of hardness around the critical connectivity.

Table 1 presents results for ω as a function of the connectivity c in the UNCOL phase
as found from numerical experiments and the above theory. Note the significant decrease
in the complexity as the initial connectivity increases. Extrapolation of numerical results to
the large-N limit is described in the inset of figure 5. For c = 7, the agreement between
numerical and analytical results is not perfect. However, the high computational complexity
of the algorithm for small c values does not allow us to obtain numerical results for large sizes
N, and affects the quality of the large-N extrapolation of ω.

In the UNCOL region, as c increases, contradictions emerge at an earlier stage of the
algorithm, the probability that the same vertex appears in different branches reduces, and

4 Let us stress that our calculation is approximate. First, as mentioned above, correlations between different branches
have been neglected. Secondly, ϕ is the Legendre transform of ω over non-negative values of ni only, a constraint we
have not taken into account in the growth PDE (17). We expect our prediction to be accurate when n2 and n3 are not
getting too small throughout the growth process, i.e. for large enough connectivities c.
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Figure 5. Simulation results exhibiting the easy–hard–easy pattern which characterizes the
complexity of the GL algorithm. The curves describe the median complexity as a function of
connectivity, as measured for N = 100 (solid line), N = 125 (long-dashed line) and N = 150
(dotted line), averaged over 1000 samples. The arrow denotes the location of critical connectivity
c3 ∼ 4.7 separating COL (left) from UNCOL (right) phases. Running times T scale exponentially
in the UNCOL phase, T ∼ 2Nω . Calculation of ω as a function of the connectivity c in the UNCOL
phase is the purpose of the present work. Inset: polynomial fits (solid lines) to simulation results of
ω versus 1/N for three different connectivity values c = 7 (circles), c = 10 (squares) and c = 15
(triangles). Extrapolations of the fits to the y-axis are our estimates for ω at N → ∞, and appear
in table 1.

Table 1. Analytical results and simulation results of the complexity ω for different connectivities
c in the UNCOL phase. The analytical values of ωTHE are derived from theory; ωNOD is obtained
through direct measure of the search tree size.

c ωTHE ωNOD

20 2.886 × 10−3 2.903 × 10−3 ± 4.42 × 10−4

15 5.255 × 10−3 5.389 × 10−3 ± 3.21 × 10−4

10 1.311 × 10−2 1.363 × 10−2 ± 1.2 × 10−4

7 2.135 × 10−2 2.993 × 10−2 ± 1.04 × 10−2

the analytical prediction becomes exact. As a consequence of the early appearance of
contradictions, the complexity ω decreases with c. At very large c, we find

ω(c) 
 3 ln 2

2

1

c2
� 1.040

c2
(25)

and therefore the (logarithm of the) complexity exhibits a power-law decay with exponent 2
as a function of connectivity c.

4. Summary and discussion

In this study we have presented an analysis of the complexity of the 3-greedy-list (GL)
algorithm acting onto uncolourable (UNCOL) random-graph instances. This analysis provides
an estimate of the typical performances of the GL algorithm. Above the colourability threshold
c3, proving the absence of colouring takes a time growing exponentially with the size N of the
graph. However, well above the threshold, i.e. for graph connectivities c � c3, instances are
strongly over-constrained, and the absence of proper colouring is established more and more
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quickly. Complexities in this region, though exponential with N, have a very small prefactor
which for large values of c vanishes with a power-law behaviour (ω(c) 
 1.040/c2).

The present study could be pursued in many directions. First, it would be interesting to
analyse the performances of the 3-GL algorithm in the colourable (COL) phase c < c3. Graphs
with low connectivities (c < cL) being almost surely coloured in a time growing linearly with
their size [23], the interesting region is the intermediate range of connectivities, cL < c < c3.
There, proper colourings are found at the cost of an exponential computational effort, which
could in principle be quantitatively characterized along the lines of [19]. Secondly, another
interesting extension would be to focus on other search heuristics. Attractive candidates are
heuristics that favour high-degree vertices. Such a procedure has been recently analysed (in
the absence of backtracking) to improve rigorous lower bounds to the COL–UNCOL threshold
c3 [15]. Last, the study of more realistic, e.g. finite-dimensional graph distributions, could aid
in the understanding of the influence of instance structure on resolution complexity.

As stated in the introduction, the main interest of 3-COL with respect to other NP-
complete problems, e.g. SAT, lies in its global gauge symmetry. The 3-GL heuristic we
concentrated on here does not break this symmetry in that it treats on an equal footing all
2-colour nodes when a split has to be made, irrespectively of their attached list of available
colours, e.g. {R,G}, {R,B} or {G,B}. It is easy to design heuristics that explicitly violate this
symmetry and preferentially colour nodes with R if possible. The analysis of the computational
performances of backtracking algorithms based on such an asymmetric heuristic is technically
quite difficult, and will be presented in a forthcoming work [22].

A promising outcome of the present work is the relative technical simplicity of our 3-GL
analysis with respect to the corresponding studies of DPLL at random SAT instances. The
growth partial differential equation monitoring the evolution of the search tree could be solved
exactly, in contradistinction with previous studies of the SAT problem. This essentially comes
from a simple conservation law, the sum of the numbers of coloured and uncoloured nodes
remaining of course constant throughout the search, and makes 3-GL with backtracking a
good candidate for future rigorous studies [24].
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